
Particle Swarm Optimization
Christopher Friedt

Email: cf@tf.uni-kiel.de
Kashif Shahab

Email: ks@tf.uni-kiel.de
Roi Rath

Email: ror@tf.uni-kiel.de

Abstract— The development of Particle swarm optimization
(PSO), an optimization algorithm based on a social behavior
model is reviewed from its first appearance in the year 1995 until
today. This paper will provide the reader with an overview of
PSO - from its basic principles and its development challenges to
the most recent version of the algorithm. The following versions
of the PSO algorithm: the original, the revised version and the
latest one - Adaptive PSO, will be explained in more details. In
addition, an analysis of the PSO algorithm as a dynamic system
is introduced.

I. INTRODUCTION

Particle Swarm Optimization (PSO) is an optimization al-
gorithm that originally evolved from the study of the unpre-
dictable behavior of the bird flock in 1995 by James Kennedy
and Russel Eberhart [1]. Their aim was to simulate the social
behavior of species in nature, which feature a movement as
part of a group (e.g. fish, birds or bees) [1]. Apart from the
shape of movement itself, the fact that this group of organisms
could move together in order to find an optimized location (e.g.
Birds adjust their positions to seek food and mates, optimizing
environmental parameters such as temperature) encouraged the
authors of [1] to shift their research to another direction. They
started to develop an algorithm with a simulation in which they
considered the birds as non-colliding particles, ending up with
a simplified mathematical version for optimization problems.

PSO belongs to a family of population-based iterative
algorithms, which all work in the same way, i.e. updating a
group of particles in a search space, in order to locate the
optimum solution [2]. Yet, the fact that PSO is very easy to
implement and can be easily applied for multi-dimensional
problems, with a relatively small number of particles [1], led
many researchers to use it for real-world applications, e.g. [3]–
[6]. Still, the PSO algorithm has some disadvantages (which
will be described later in this paper), and as an outcome there
is an ongoing research in order to improve it.

This paper in arranged as follows: in section II the original
PSO algorithm is explained along with its pros and cons.
The evolution of weighting parameters to the original version
is discussed in section III. In section IV an analysis of the
PSO algorithm as a dynamic system is introduced. The latest
version: Adaptive PSO (APSO) will be explained in details
in section V. Finally, some real-world applications will be
described shortly in section VI.

II. THE ORIGINAL PSO ALGORITHM

A. Basic Concepts

PSO applies the concept of social interaction to problem
solving by performing a direct search method in order to find

an optimal solution. The PSO uses a set of N particles that
constitute a swarm moving around in a D-dimensional search
space looking for the best solution. The term swarm is well
defined in [1]. Each particle is treated as a point which changes
its trajectory according to two concepts: the first is the ability
of a particle to remember the coordinates in the search space
which are associated with its best solution (fitness) from its
entire flying history . This value is called personal best (pbest).
The second is the ability of the particles to “communicate”
with each other in order to obtain the best value obtained so far
by any particle in the swarm - the global best (gbest). A local
best version exists in the literature as well. This case however
is out of the scope of this paper. Each particle is randomly
accelerating toward its pbest and the gbest locations, i.e. its
velocity is changing with each time step. The modification
of the position of a particle can be mathematically modeled
according to these following iterative equations:

vd
i (k + 1) = vd

i (k) + c1rand
d
1(k)(pBest

d
i (k)− xd

i (k))

+ c2rand
d
2(k)(gBest

d
i (k)− xd

i (k))
(1)

xd
i (k + 1) = xd

i (k) + vd
i (k + 1) (2)

where vd
i is the velocity component of the i-th particle in the

d-th axis, xd
i is the corresponding position of the particle, k is

the current iteration step, c1 and c2 are acceleration factors and
rand1 and rand2 are random weights uniformly distributed
in the range (0, 1).

B. The Algorithm
For the following subsection the position and velocity of

the i − th particle is defined as xi = [x1
i , x

2
i , . . . , x

D
i ] and

vi = [v1
i , v

2
i , . . . , v

D
i ], respectively, where the same notations

in equations 1 and 2 are used. One can implement the PSO
algorithm in the following steps [3]:

1) Define the limits of the search space.
2) Initialize a population of N particles. Randomly se-

lect the position and velocity for each particle in all
dimensions.

3) Evaluate the fitness function for each particle.
4) Compare fitness value with pbest. If the fitness value

is better than pbest, update pbest as the current fitness
value.

5) Find the best pbest of the entire population. If it is
better than gbest, update gbest as the current best pbest.

6) Update velocities and positions of particles according
to equations 1 and 2.

7) Go back to step 3 until the maximum number of
iterations or when an optimization criteria are met.



C. Advantages and Disadvangates

As was mentioned before in Sec. I, the PSO is very easy
to implement requires a low computational effort due to the
usage of simple operators [1]. Another major advantage is
the ability to run the PSO for multi-dimensional problems,
and yet using a small number of particles (typically 30 [2]).
The Algorithm tends to converge in the majority of simula-
tions [2]. Unfortunately, the PSO, like any other population-
based iterative algorithms, was most likely to face with two
major difficulties: the first is a premature convergence into
a suboptimal solution (e.g. a local minima or maxima of a
function). The second - a very slow convergence, consists of
a large number of iterations which increases the run-time of
the algorithm, which can problematic in real-time applications
[7].Finally, one can easily understand from Sec. II-B that the
original algorithm assumes that the problem to be optimized
is time-invariant, i.e. the basic algorithm is unadaptive to a
time-variant problem.

III. EXPLORATION, EXPLOITATION AND PARAMETER
SELECTION

The first two disadvantages are often explained as an
imbalance between the global and the local search [2], or as
was stated later on in many PSO papers - exploration and
exploitation. Exploration can be defined as the ”desire” of the
swarm to explore as many regions as possible in the search
space, while exploitation is a search being held in a smaller
region of the search space, in order to pin-point the optimal
solution [8].

New parameters such as the inertia weight (IW) and the con-
striction factor (CF) were suggested by [3] in order to create
a smooth transition between the exploration and exploitation
stages. The CF will not be presented in this paper. The IW is
calculated as follows:

w = wmax − (wmax − wmin)
g

G
(3)

where wmax and wmin are the maximum and minimum values
for the IW, respectively, g is the current iteration step and
G is the maximum number of iterations. the IW factors the
component vd

i (k) in Eq. 1. typical values for wmax and wmin

are 0.9 and 0.4, respectively. As a linearly decreasing function,
the IW gradually decreases the velocities of the particles. This
comes from the assumption that in the beginning of the search
the swarm is in the exploration stage, as there is not enough
information upon the location of the optimal solution. After
locating the general location of the optima, exploitation should
be performed in order to find the exact location [3]. These
parameters are however based on empirical assumptions. In
the following section an analytic way to choose this and other
parameters is explained.

IV. A STATE-SPACE MODEL FOR PARAMETER SELECTION

PSO is at its basis a stochastic algorithm. Its efficiency
has been proven only empirically in the first years after
its development, as researchers could not explain how the
algorithm works [9]. The desire to improve the algorithm’s

parameter selection in order to control the convergence of the
particles (not only the speed of convergence but the path of
the particle to its target as well) led the authors of [10] and
[9] to conduct a comprehensive theoretical analysis based on
the well-known system and control theory [11]. In 2002, the
author of [8] suggested a slightly simplified analysis based on
the same theory, along with some interesting guidelines for the
parameters selection. This section summarizes this paper, and
the reader is encouraged to refer to it for further information.

A. A State-Space Model

The iterative equations (for an arbitrary dimension, as these
calculations are performed in each dimension independently)
of the PSO algorithm can be written as:

v(k + 1) = av(k) + b1rand1(pBest− x(k))
+ b2rand2(gBest− x(k)) (4)

x(k + 1) = cx(k) + dv(k + 1) (5)

where k is the iteration step, a is a momentum factor, b1 and
b2 are the acceleration coefficients and c and d are control
coefficients. In order to apply the dynamic system model,
the random factors were removed. A qualitative discussion
between the deterministic version analyzed here and the orig-
inal stochastic one is given in [8]. After some mathematic
manipulations, the equations can be rewritten as:

v(k + 1) = av(k) + b(p(k)− x(k)) (6)

x(k + 1) = cx(k) + dv(k + 1) (7)

where b is the arithmetic mean between b1 and b2, and p is a
weighted mean of pBest and gBest. It can be proven that
c and d can be fixed (e.g. c = d = 1 as in the original
algorithm), without any negative impact on the algorithm.
Another manipulation on (6) and (7) is needed in order to
rewrite them in the following matrix form:[

x(k + 1)
v(k + 1)

]
=
[
1− b a
−b a

] [
x(k)
v(k)

]
+
[
b
b

]
p(k) (8)

or in the shorter matrix form as:

x(k + 1) = Ax(k) + Bp(k) (9)

This is the state equation from the well-known state-space
model representation for linear systems, where x is the state
vector, composed of the particle’s current position and veloc-
ity, p is the system’s external input, A is the system matrix
and B is the input matrix. It is possible now to analyze the
convergence of the algorithm with tools from system and
control theory.



B. Convergence Analysis

In linear discrete systems, it is necessary and sufficient to
investigate the so-called Eigen values of A, in order to deter-
mine the system’s stability, and form of convergence (direct,
oscillating, zigzagging) when stability is indeed attained. The
first step is to solve the equation:

det(A− Iλ) = 0 (10)

which yields the roots of the typical polynomial - the Eigen
values of A. In order to attain stability for a discrete system,
all its Eigen values should be inside the unit circle of the
complex Z plane. This yields the following conditions on a
and b:

a < 1, b > 0, 2a− b+ 2 > 0 (11)

which create a convergence triangle in the (a,b) space. In a
similar way, the conditions for harmonic oscillations (both
Eigen values are complex) and zigzagging (one of the Eigen
values has a real part) yield other conditions on parameters
a and b. All conditions are summarized graphically in Fig. 1.
Regarding the speed of convergence, the algorithm converges

Fig. 1: The different fields of convergence according to the values
of parameters a and b

faster when choosing a point (a, b) closer to the middle of the
convergence triangle.

This analysis was conducted under the assumption of a
deterministic algorithm. The results for the original version
would be similar but not the same, as the randomness supports
the exploration feature of the algorithm, i.e. the convergence
would be slower.

V. THE ADAPTIVE PSO ALGORITHM

A. Motivation

As a consiquence of the first two weaknesses of PSO
mentioned in II-C, the most active current areas of PSO
research aim to i) increase the rate of convergence, and ii)
avoid local optimas [8], [12]. However, making up ground on
one goal has historically led to losing ground on the other goal,
leading to an exploration-exploitation trade-off [8], [12]. The
strategy of Chung et al, the adaptive PSO algorithm, tries to

empirically achieve a gain toward both goals simultaneously
by introducing a new approach for parameter control [12].

B. Formulation

Through prior research findings and good observation,
Chung et al took a different approach by basing parameter
adaption on evolutionary state [12] rather than time [3], [8].
Using mean inter-particle distances the meaningful evolution-
ary states of the swarm were characterized and an evolutionary
state estimation (ESE) strategy was devised [12].

Along with state-based parameter control, an auxilliary
search operator was introduced specifically to improve the
premature convergence to a local optima problem. The appli-
cation of this search operator and its effect on the swarm as
a whole led to the formulation of the elitest learning strategy
(ELS) [12] which will be addressed in section V-D.

C. Evolutionary State Estimation (ESE)

In order to classify the swarm with one of several possible
states, an evolutionary factor, f , and a custom-singleton
defuzzification method were employed. The fuzzy states are
described in table I and can be visualized in Fig. 2. To calculate
the evolutionary factor the following procedure was used:

1) For each i particle, calculate the mean distance, di, to
each of the other particles according to (12), where
xk

i is the position of the i − th particle in the k − th
dimensionality.

2) Identify dg , the globally best particle (with the fitness
function), and determine the maximum and minimum
distances, dmax and dmin from all di.

3) Calculate the evolutionary factor, f , according to (13).
4) Classify the state of the swarm.

di =
1

N − 1

N∑
j=1,j 6=i

√√√√ D∑
k=1

(xk
i − xk

j )2 (12)

f =
dg − dmin

dmax − dmin
(13)

Now, by inspection, the evolutionary factor is simply the
normalized, mean inter-particle distance with respect to the
globally best particle. Its mapping to the evolutionary states is
well described in Fig. 2.

The custom defuzzification method uses a mixture of state-
transition sequence (rule-base) in some cases and membership
functions in other cases. The membership functions are defined
in [12] and depicted in Fig. 2. The state-transition rules (e.g.
S1 → S2 → S3 → S4 → S1 . . . ) take precedence over the
membership functions in the overlapping regions. Otherwise
the singleton method is used to assign a state. Therefore, if f
lies in an overlapping region, the previous state at iteration g
will have precedence in determining the state at iteration g+1
[12].

In the ESE, the parameters c1, c2 and w, previously men-
tioned in sections II-B and III , are controlled dynamically.



Fig. 2: Fuzzy states: states are mapped proportionally to mean inter-
particle distance to gbest. Overlapping regions require defuzzification.
[12]

State Description c1 c2
exploration (S1) Particles discover new optima and stray

from the globally best location
++ --

exploitation (S2) Particles exploit their own history and
move toward their previous best location

+ -

convergence (S3) Particles converge to the globally best
location

+ +

jumping-out (S4) Globally best position is changed. Glob-
ally best particle ’jumps out’ of the
swarm in random directions, trying to
improve global fitness

-- ++

TABLE I: APSO state descriptions and associated acceleration
parameters c1 and c2. The notation ++, --, +, - indicates an increase,
decrease, slight increase or slight decrease, respectively.

The IW is controlled according to (14).

w(f) =
1

1 + 1.5e−2.6f
∈ [0.4, 0.9],∀f ∈ [0, 1] (14)

The acceleration coefficients are increased or decreased based
on state according to table I. For more information and for the
full formulation, the reader should refer to [12].

D. Elitist Learning Strategy (ELS)

The ELS was designed to operate exclusively on gbest
during S4 in order to overcome the premature convergence to
a local optima problem [12]. The ELS intentionally perturbs
the globally best particle to jump-out of the swarm and probe
toward other, potentially better optima [12]. To reduce the
computational complexity of this process in higher dimen-
sionalities, the probe performed in one dimension randomly
chosen as [12]:

P d = P d + (xd
max − xd

min)N (µ, σ2) (15)

Here, N is the normalized Gaussian distribution, with mean
µ = 0 and a standard-deviation (SD) σ. The SD is termed the
elitist learning rate [12] and is calculated according to:

σ = σmax − (σmax − σmin)
g

G
(16)

where g is the current iteration step and G is the maximum
number of iterations. The values of σmin and σmax were
empirically determined to be 0.1 and 1.0, respectively [12].

E. APSO Performance

The APSO achieves an increase in convergence speed with
excellent local-optima avoidance. In nine of 12 test functions,
each repeated 30 times, the APSO was shown to converge
faster on average than seven contemporary PSO variants [12].

Overall the APSO converged to acceptable solutions 100%
of the time (the exception being Griewank’s function, 66%),
again besting the seven other PSO variants [12].

VI. APPLICATIONS

PSO can be used in numerous applications. This paper will
focus on few examples related to topics from Digital Commu-
nications. In [4] PSO is used for an adaptive infinite impulse
response (IIR) filter structures. A comparison is made between
the PSO and the genetic algorithm (GA), both optimizers for
a multimodal problem, in order to evaluate their performance
in optimizing a non-linear filter. In [6] the use of PSO in
virtual MIMO communication protocol is described. Another
application is presented in [5], where PSO is used to improve
the processing time of the Space Alternating Generalized
Expectation (SAGE) maximization algorithm, which is used
for channel parameter estimation. Many other applications can
be found in [3].

VII. SUMMARY

In this paper several milestones in the evolution of PSO
were reviewed, from its basic concepts to the most recent
version of the algorithm. The reader is encouraged to proceed
to the cited articles and to implement and investigate different
versions of the algorithm for deeper understanding of PSO.

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Neural
Networks, 1995. Proceedings., IEEE International Conference on, vol. 4,
Nov/Dec 1995, pp. 1942–1948 vol.4.

[2] Y. Shi and R. Eberhart, “Empirical study of particle swarm optimiza-
tion,” in Evolutionary Computation, 1999. CEC 99. Proceedings of the
1999 Congress on, vol. 3, 1999, pp. –1950 Vol. 3.

[3] Eberhart and Y. Shi, “Particle swarm optimization: developments, appli-
cations and resources,” in Evolutionary Computation, 2001. Proceedings
of the 2001 Congress on, vol. 1, 2001, pp. 81–86 vol. 1.

[4] D. Krusienski and W. Jenkins, “Particle swarm optimization for adaptive
iir filter structures,” in Evolutionary Computation, 2004. CEC2004.
Congress on, vol. 1, June 2004, pp. 965–970 Vol.1.

[5] H. Bodur, C. Tunc, D. Aktas, V. Erturk, and A. Altintas, “Particle
swarm optimization for sage maximization step in channel parameter
estimation,” in Antennas and Propagation, 2007. EuCAP 2007. The
Second European Conference on, Nov. 2007, pp. 1–4.

[6] Y. Yuan, Z. He, and M. Chen, “Virtual mimo-based cross-layer design
for wireless sensor networks,” Vehicular Technology, IEEE Transactions
on, vol. 55, no. 3, pp. 856–864, May 2006.

[7] I. Supratid, “A multi-subpopulation particle swarm optimization: A
hybrid intelligent computing for function optimization,” in Natural
Computation, 2007. ICNC 2007. Third International Conference on,
vol. 5, Aug. 2007, pp. 679–684.

[8] I. C. Trelea, “The particle swarm optimization algorithm: conver-
gence analysis and parameter selection,” Information Processing Letters,
vol. 85, no. 6, pp. 317–325, Mar. 2003.

[9] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability,
and convergence in a multidimensional complex space,” Evolutionary
Computation, IEEE Transactions on, vol. 6, no. 1, pp. 58–73, Feb 2002.

[10] M. Clerc, “The swarm and the queen: towards a deterministic and
adaptive particle swarm optimization,” in Evolutionary Computation,
1999. CEC 99. Proceedings of the 1999 Congress on, vol. 3, 1999,
pp. –1957 Vol. 3.

[11] B. Girod, R. Rabenstein, and A. Stenger, Signals and Systems. John
Wiley and Sons, LTD, 2001, ch. 2.

[12] Z.-H. Zhan, J. Zhang, Y. Li, and H.-H. Chung, “Adaptive particle swarm
optimization,” Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, vol. 39, no. 6, pp. 1362–1381, Dec. 2009.


